Hoffman900 wrote: ↑25 Nov 2022, 22:14
AR3-GP wrote: ↑25 Nov 2022, 22:13
Hoffman900 wrote: ↑25 Nov 2022, 22:09
Are we going to hang our hat on what someone who has no F1 experience, did some rudimentary Cfd work on a random forum says?
He worked on projects that had budgets of the entire F1 field combined and the issues if not resolved would have resulted in death. The physics are the same.
Likely the issue is Mercedes had a high peak downforce with a steep C_l curve, that as the car got sucked down, the velocity of it caused it bounce off the ground. This bouncing introduced von karmen vortex street components (ie: flutter) that it could never drive out of. Stiffening the car to keep it from bouncing off the floor only goes so far unless the forces involve overpower the sidewall, which they did. They're undampened.
I forgot how pedantic this place is and how much it's not about learning but a **** measuring contest of purported knowledge.
None of this has to do with personal knowledge. I've only presented to you Adrian Newey's comment on the matter. I am not a source of reference. I can only gather what other's have said and access their credibility.
When it comes down to it, your PHd friend has no race car experience while Adrian Newey just won the championship.
And I presented to you three other F1 aerodynamics, two of which have also won championships. In Merc's case, it's likely what I presented. Just stop and you're out of your depth, so not sure why you even waded into this in the first place. Flutter on an airliner flap is the same as a the rear wing bouncing up and down. It's the same physics and the negative feedback loops it presents are the same.
Adrian Newey built the car that did not porpoise and won the championship. One can presume that he knows more than the rest of your sources.
I never said that flutter does not exist. In fact I explained that flutter can be a forcing function acting upon a sprung mass, but highlighted that Adrian Newey does not point to it as the root cause. Adrian Newey points to the loss of downforce at very low ride heights.
You have a personal theory which seems to only apply to "Mercedes" prodigal levels of downforce superior to RB, but then fails to explain why backmarkers also porpoised.
The theories proposed by Adrian, Kyle, and Migeot are much more plausible and apply to all teams. It's nothing to do with overall downforce, but entirely due to the shape of the downforce curve as a function of ride height, and where you are operating the car in terms of ride height.
A lion must kill its prey.