I've been doing CFD simulations on my own computer for some time using
Sketchup and the
Khamsin plugin to do the meshing and processing using
OpenFOAM. It's really matured this year with the latest Khamsin plugin, which is much improved. Despite this, it's still hard to setup and the processing can take a very long time, especially if you want to model a whole car. The tool to view the results,
Paraview, is also pretty tricky to learn. This is where Hibou Scientific's latest product,
Aerodynamic on Demand, comes in.
The web application takes your model in standard STL format, which can be exported from any CAD program, including the free and easy to use
Sketchup. There are currently four options to choose from; Geometry Check, Discovery, Detailed and Premium. The first option is just to make sure your model is good and pointing in the right direction. It's worth doing this to be sure you have it right, especially as it's free and results don't take long to come back. The other options give you increasing accuracy and a few extra features such as graphs of downforce/drag over the length of the car. Needless to say, I had to give this a go and delved in with a Premium analysis for $15AUD (just under a tenner), currently discounted from $40AUD.
I fired up Sketchup and drew a quick model of the ADR by tracing a side-on photo and extruding. It's rough, but all I need for now. After I added in the Export STL plugin from the Sketchup website, I was able to generate the STL file. I tapped in my email address, the speed I wished to simulate at, the yaw angle (0 degrees), selected the STL file, pressed the button for Premium analysis and I was able to immediately checkout with Paypal. Simples!
It's worth noting that these simulations take a long time with big models and it takes 24-36 hours for the results to come back. When they arrived the next day, I was presented with some summary data and a large number of 3D views that could be navigated in the web browser (Chrome works, but my version of Internet Explorer does not as it uses WebGL). The left mouse button rotates the car, the right button zooms in/out and the middle button moves around, which is where my first problem arose - my laptop only has two mouse buttons!
So what did I receive back? Why don't you
take a look? On the Summary tab, it tells me what options I selected when the model was uploaded and how big the model is on the left. On the right, it shows the complexity of the model, downforce and drag values and the all important centre of pressure. At this point, I gravitated to the downforce value and was surprised to see 5kg of lift with a CoP near the front wheels. Then there's the L/D ratio of 0.19:1. Not good news! We'll see why later.
The next tab has three 3D views; Geometry, Streamlines and Pressure Map. The first is the same view you get in the free geometry check. The second is a pretty view for showing people that might show something interesting if you're lucky. The third is the pressure map and shows the car colourised by pressure with grey being ambient, blue being low pressure and red being high pressure. What we're aiming for here is a blue bottom and a red top! This is the first point of analysis, so what did I learn?
The first thing that's striking is the dark red area on the top of the splitter. That shows there's good downforce on the splitter as it's a nice shade of blue on the bottom. It also shows there's a nice amount of drag there too as the vertical area behind the splitter is also red. Going back to the underside of the splitter, it's blue at the leading edge because the air is separating from the splitter. It might be good for downforce at that exact point, but it's not much help for the rest of the car that has to utilise that air!
Also immediately obvious is the blue areas on the side of the car ahead of the wheels. Again, that's separation of the flow caused by lazy modelling as the edges of the car are sharp. Whilst the same is true of the side of the wheels, you'll note an interesting pattern which shows the generation of vortices from the high pressure area ahead of the tyre to the low pressure area at the side. This is often coined as tyre squirt.
Moving to the bottom of the car, there's red areas in the wheel arches caused by the high pressure area ahead of the tyre spilling into the wheel arch. That's why cars have vents on the top of the wheel arches! Looking at the floor as a whole, there's a blue tinge to in, which means there is some low pressure there, albeit not much.
Turning the car over, there's clear low pressure over much of the body, notably the convex front wheel arches, rear wheel arches, rear deck and the rollbar. The rollbar is mostly due to separation and the flow at that point is slightly upwards, hence why the underside is grey. I don't believe the real car has this much lift from the rollbar as it's not got sharp edges, so separation isn't going to be an issue. The wheel arches and rear deck most likely do have this low pressure, but without re-designing the body, I can't do much about it. What's important here is that most of the top side of the body is a darker blue than the underside.
Moving rearwards, the rear wing shows strong high pressure on the top and low pressure on the underside. This explains how the centre of pressure is so far forwards as the rear wing is producing solid downforce to counteract the lift from the bulk of the body. We'll see that graphically later on.
The next tab is the 3D streamlines and has 13 views with streamlines from a vertical line ahead of the car. These streamlines show the path of the air around the car.
This view shows clearly how the air rolls over the sides of the car, generating a vortex that runs down the side of the car into the rear wing end plate. This view shows some air going under the car and through the diffuser, whilst the air over the top hits the rollbar. The rollbar is again causing a vortex and some of the air goes both under and over the rear wing.
The next tab is a series of 13 vertical cross sections showing the pressure or velocity of the air all around the car. From this, you can see the wake of the car and also
clearly see the separation at the top of the rollbar. The following tab is the same, but with 6 horizontal cross sections.
On the last tab is the distribution of drag and downforce over the length of the car. Taking the drag first, the nose causes the largest single point of drag. The rollbar is also causing a large amount of drag, most likely more than on the real car because of the separation on the top side. The final two peaks are the rear of the car, which is a flat back in the model and coloured blue in the pressure map, and the rear wing.
The downforce is also interesting (negative numbers are downforce, whilst positive are lift) with most of the downforce coming from the front splitter, moving to lift where the high pressure under the wheel arches combine with the low pressure over the top. Low pressure on the floor and ambient in the cockpit means net downforce, whilst the huge lift from the rollbar is the cause of the biggest single point of lift. Clearly, this is skewing the overall figures with over 100N of lift from the rollbar alone! Steady lift from the rear clam is countered by 146N of downforce from the rear wing, which appears to have a lift/drag ratio of about 4.4:1. The lift from the rear clam has been shown true when the rear body clip broke at Llandow and the whole rear clam lifted at around 100mph!
So, what have I learned from this? It's likely that the car doesn't produce much downforce. Taking off the 100N of lift from the rollbar, that's only about 5kg of downforce at 60mph. Even allowing for the simplistic nature of the model and the lack of wheel rotation, there's not much downforce there. How can I improve that? Simplistically, that's a case of reducing pressure on the underside and increasing pressure on the top. We must also be mindful of the balance, which is currently very much rearwards.
We know that there's high pressure in the wheel arch, so venting that will help reduce lift, bringing the CoP forwards. With lower pressure in the wheel arch, we can fit a diffuser to the trailing edge of the splitter to reduce pressure under the splitter and increase the area of the splitter (force is equal to pressure x area). To try and reduce pressure on the whole of the underside, we can enlarge the diffuser to try and draw air under the car at higher speed, thus reducing pressure. We can also try to relieve the pressure ahead of the front wheels by reducing the pressure of the air going past the wheel arch. This could be achieved by vortex generation from end plates on the splitter. So the next step is to model that...