Here a plausible racing line computer generated, using speed data of Rosberg’s 2014 pole (from analysis of engine noise) and track’s boundaries (from satellite image), with the aim of minimizing an opportune fitness function of the resulting lateral acceleration and other parameters:
And here the corresponding radiuses (numbers are only to give you an easy visual correspondence between the graphs, not corner’s “names”):
Obviously it’s not the exact representation of the racing line Rosberg followed, just a reasonable trajectory to get an hopefully close estimate of lateral acceleration (it’s very simplified, mass point), but should be good enough for your needs.
BTW, I’d be interested in knowing the reasons that made you pick Canada, of all tracks, for the project you describe, not sure it’d be my first choice.
al_garnett wrote:
However in corners with low lateral acceleration i am getting results of a negative value for downforce and i can't get my head around it.
You get negative downforce in some places because you are imposing a too high friction coefficient for these corners, which results in an underestimated vertical force, even lower than car’s own weight.
These low lat acc corners are easily flat out, power limited, lateral force required is far from the max the car is capable of, so the friction coefficient effectively used is lot lower than max.
For your needs, these corners should just be ignored, effectively straights.